报告题目:Thermodynamically consistent phase-field modelling and energy law preserving computational methods for two-phase flows and moving contact line problems
报告时间:2019年6月28日(星期五)10:00
报告地点:北辰校区理学院西教五307
报告嘉宾:林平 教授 (University of Dundee英国邓迪大学)
报告简介:We develop a phase-field model for the binary incompressible (quasi-incompressible) fluid with thermocapillary effects, which allows for the different properties (densities, viscosities and heat conductivities) of each fluid component while maintaining thermodynamic consistency. The governing equations of the model including the Navier-Stokes equations with additional stress terms, Cahn-Hilliard equations and energy balance equation are derived within a thermodynamic framework based on entropy generation, which guarantees thermodynamic consistency. A sharp-interface limit analysis is carried out to show that the interfacial conditions of the classical sharp-interface models can be recovered from our phase-field model. Energy law preserving finite element methods are developed for the variable density case. The modelling and computational method are also applied to moving contact line problems. A few illustrative computational examples will be presented as well.
嘉宾简介:Ping Lin, 1984年南京大学数学学士,1987年南京大学应用数学硕士并留校任教。1991年赴加并于1995年获加拿大不列颠哥伦比亚大学应用数学博士学位。博士论文获1994年美国工业与应用数学学会(SIAM)博士生论文奖并特邀在SIAM年会作50分钟邀请报告。1996年赴美在斯坦福大学应用力学系及计算机系做博士后研究。1998年下旬在伦斯勒理工短暂停留后,1999年1月开始在新加坡国立大学数学系担任助理教授,后升为副教授,教授。2007年开始担任英国邓迪(Dundee)大学科学工程学院数值分析/计算数学教授;2010年,担任北京科技大学兼职教授。主要从事应用数学与科学工程计算,计算材料、计算物理、流体力学和图像处理等交叉学科研究。